
HYPERLISTS

Geir Isene
g@isene.com

http://isene.com

inspired by

Jean-Dominique Warnier, Kenneth Orr

Egil Möller, Axel Liljencrantz, Marilyn Abrahamian

editing

Marilyn Abrahamian

Version: 2.5 (2023-08-30)

License: CC by-sa

Everything. Concise and precise.

HyperList page: http://isene.org/hyperlist/

1

http://isene.com
http://isene.org/hyperlist/

CONTENTS 2

Contents
1 Introduction 3

2 Background and definition 11

3 HyperListS 13

4 HyperListS Items 13
4.1 Starter . 13
4.2 Type . 14
4.3 Content . 14

4.3.1 Element . 14
4.3.1.1 Operator . 14
4.3.1.2 Qualifier . 14
4.3.1.3 Substitution . 16
4.3.1.4 Property . 16
4.3.1.5 Description . 16

4.3.2 Additive . 17
4.3.2.1 Reference . 17
4.3.2.2 Tag . 18
4.3.2.3 Comment . 18
4.3.2.4 Quote . 18
4.3.2.5 Change Markup . 18

4.4 Separator . 19

5 A self-defining system 21

6 Notes on style 26

7 Tools 26

Abstract

HYPERLISTS represents a way to describe anything – any state or any transition. It represents data in tree-structure lists
with a very rich set of features1. It can be used for any structuring of data, such as:

• Todo lists
• Project plans
• Data structures
• Business processes
• Logic breakdowns
• Food recipes
• Outlines of ideas
• . . . and much, much more

The article below starts off with several examples where lists are useful as a way of describing something and where
HYPERLISTS is especially powerful. It then goes into every part of HYPERLISTS and how it can be used to describe anything
(yes – anything). Toward the end, HYPERLISTS is used in describing itself, something very few frameworks are able to
accomplish.

“The list is the origin of culture. It’s part of the history of art and literature. What does culture want? To make
infinity comprehensible. It also wants to create order – not always, but often. And how, as a human being, does
one face infinity? How does one attempt to grasp the incomprehensible? Through lists [. . .]” (Umberto Eco)

1The “HyperList to the power of S” signifies the iterative or fractal nature of such lists.
The name represents both singular and plural of the word – both the system and a list or lists conforming to this system.

3

1 Introduction
On the way in to the shopping mall, you take a quick glance at the list given to you by your mother/father/brother/wife:

5 liters of milk
2 packages of butter
2 liters of orange juice
bananas (5-8)

A simple list. But the next time you go to the shop, the list has grown to a paragraph:

“ If they have pepperoni and that special pizza sauce, buy that and also flour, yeast, cheese and ham. If not,
then buy the Indian spicy chicken with 5 or more suitable vegetables. If the chicken is sold out, be creative and
decide what we should have for dinner. Also buy apple juice, eggs, washing powder and paper towels.”

You wonder if that paragraph can be written a bit more concise.
At work you are confronted with the task of writing a few efficient processes for the IT department. You’re supposed to

create the overall process for IT Service Operations2 and IT Service Transition 3 together with key personnel from that area.
IT Service Operations covers that part of the IT department dealing with the daily operations while IT Service Transition
coordinates and implements all changes within IT. Both areas contain several processes, supporting delivery of efficient IT
services.

The task of mapping the processes would be easy if you could simply chuck them all into a room with a whiteboard and
string it out. But since they are located in three different cities, you will have to do some nifty collaboration.

With the expectation from management of a colorful flowchart4 depicting the overall work flow, you are in for a challenge.
Collaborate drawing tools are not that easy.

You decide to send a draft out and let each participant amend the draft and send it back to you. After incorporating all
the changes you deem good, you send out another draft, etc. After weeks of battling some people’s disappointment over the
ditching of some of their ideas, you finally arrive at a process map that you turn into this:

2IT Service Operations is part of the ITIL best practice framework,
see http://www.itil-officialsite.com/AboutITIL/WhatisITIL.aspx
and http://www.itframeworks.org/wiki/Category:Service_Operation
3IT Service Transition: http://www.itframeworks.org/wiki/Category:Service_Transition
4Flowchart: http://en.wikipedia.org/wiki/Flowchart

http://www.itil-officialsite.com/AboutITIL/WhatisITIL.aspx
http://www.itframeworks.org/wiki/Category:Service_Operation
http://www.itframeworks.org/wiki/Category:Service_Transition
http://en.wikipedia.org/wiki/Flowchart

4

While working hard on creating process maps5, you become frustrated at all the things the flowchart methodology cannot
do or that are hard to represent, such as:

• Telling the user not to do something
• Repeating a set of tasks a certain number of times
• Parallel flows merging at certain times or under certain conditions
• Multiple decisions, such as picking one of 256 colors (creating one hell of a diamond tree)

Still, you settle for the flowchart methodology for now, creating several that look like this6:

At your desk one morning, you labor at the task of managing an ever-growing task list7. With half a dozen responsibilities
under your command, the list is starting to get a bit messy. You end up grouping the tasks and adding subtasks in a todo-list
tree to give it a more workable structure.

5Process maps: http://en.wikipedia.org/wiki/Process_Maps
6Request Fulfillment, an ITIL process: http://www.itframeworks.org/wiki/Category:Request_Fulfilment_Management
7Task list or Todo list: http://en.wikipedia.org/wiki/Todo_list#Task_list

http://en.wikipedia.org/wiki/Process_Maps
http://www.itframeworks.org/wiki/Category:Request_Fulfilment_Management
http://en.wikipedia.org/wiki/Todo_list#Task_list

5

In your favorite text editor, after a few minutes, and many minutes before it’s completed, it looks like this:

• Marketing

• Create a campaign for selling the new mobile service
• Contact our advertisement agency – Done
• Set up an initial brainstorming meeting – Done (booked for 2012-02-03)
• Hold the meeting

• Work out a project plan
• Commit resources

• Public Relations

• Contact Peter at Mobile Press
• Present our new revolutionary mobile service
• Give him and possibly other journalists there a free trial of the service

• Business development

• Refine the Service Portfolio strategy
• Set up a Project Task Team (PTT) for bailing out failing projects

• Include Denise, Tracy and John P in the PTT

• Process design

• Finalize the overall process design for IT
• First target is Service Operations and Service Transition

• Get the final proposal approved by the IT Manager – Done
• Get approval for key process maps

• Incident Management
• Problem Management
• Change Management
• Request Fulfillment (should Access Management be included here?)
• Release & Deployment Management (include Validation & Testing in same map?)

• Get from the IT Manager the next focus area

A todo list or task list like this resembles a shopping list. It is also similar to describing a business process. . .
It strikes you that there should be a methodology that would be capable of describing anything. Any shopping list, business

process, todo list, database model, food recipe, jotting down of creative ideas, building logical arguments, or anything else
that it would be useful to describe in some way. It should not matter whether it is a thing, a state, a flow, a process or wild
ideas that are to be described. They should be describable using the same format, the same methodology. It should be text
based for easy collaboration, like we see with Wikipedia, and it should overcome the limitations of, for instance, the flowchart
methodology.

You start searching. And you come across the website isene.com8 with a document titled “HYPERLISTS ”. Intrigued by
the quote on the front page, you start reading. . . this document.

You study up on the HYPERLISTS methodology and decide to take the previous shopping lists, business processes and todo
lists and turn them into real HYPERLISTS . . .

5 liters of milk
2 packages of butter
2 liters of orange juice
bananas (5-8)

. . . becomes:

Shopping 2012-01-15

[5 liters] milk

[2 packages] butter

[2 liters] orange juice

[5..8] bananas

8The website of the author: http://isene.com

http://isene.com

6

The content in the square brackets denotes the amount or number of items on that line.
You realize with this simple convention, you can describe things that would be hard to represent in flowcharts. You try to

think of ways to draw the following in a flowchart:

Write ad

[3] Proofread

Correct errors

First write the ad, then proofread it three times sequentially while correcting errors in the text during each proofreading.
In HYPERLISTS it is that easy to say that something should be done a certain number of times.

The “paragraph shopping list”:

“ If they have pepperoni and that special pizza sauce, buy that and also flour, yeast, cheese and ham. If not,
then buy the Indian spicy chicken with 5 or more suitable vegetables. If the chicken is sold out, be creative and
decide what we should have for dinner. Also buy apple juice, eggs, washing powder and paper towels.”

. . . becomes:

Shopping 2012-01-19

OR(PRIORITY):

Pepperoni and special pizza sauce

Flour

Yeast

Cheese

Ham

Indian spicy chicken

[5+] suitable vegetables

Be creative and decide what we should have for dinner

Apple juice

Eggs

Washing powder

Paper towels

With the use of the “OR”, the list shows that only one of the three sub-Items (“Pepperoni and special pizza sauce”, “Indian
spicy chicken” and “Be creative and decide. . . ”) is to be chosen. The “(PRIORITY)” is a Comment specifying that the
sub-Items are to be chosen in the order of priority as listed.

The overall process map for IT Service Operations and Service Transition becomes (with added valuable information):

IT Service Operations and Service Transition processes

Service Desk (Service Operations function)

Dispatch communication between User and process areas

Service Operations processes

Event Management

Create Incident tickets from events, generated by monitoring systems

Incident Management

Create Workaround for Incident ticket

[?] Create Problem ticket and forward to <Problem Management>

Access Management

Verify identity of requester for access to a given service

Uphold Security Policy

Grant access to service

Request Fulfillment

[Request is Standard Change] Handle as authorized by Change Management

[Request is not a Standard Change] Help User fill out a Request for Change (RfC)

Send RfC to <Change Management>

Keep User informed of progress of the requested service

7

Problem Management

Do Root Cause Analysis on the problem reported in Problem ticket

Create a permanent solution to the problem

[Solution requires a Standard Change] Execute Standard Change

[Solution requires a non-standard Change] Create RfC

Submit RfC to <Change Management>

Service Transition processes

Change Management

Receive RfC

[Evaluation needed] Forward to <Evaluation Management>

Decide on RfC

[Approved] Forward a Work Order to <Transition Planning & Support>

[Not approved] Send rejection with proper reason to submitter

Receive final Release Report from <Validation & Testing Management>

[PIR not approved] Send to <Release & Deployment Management> for correction

[PIR approved] Notify appropriate parties of new service in production

Evaluation Management

Receive request for evaluation of RfC from Change Management

Evaluate RfC and possible alternative solutions

Report evaluation to <Change Management>

Transition Planning & Support

Receive Work Order from Change Management

Prioritize release

Commit resources

[Test Platform, Pre-production Platform, Production Platform]

Release & Deployment Management

Create release

Deploy release

Validation & Testing Management

Test release

[Test fails] Send to <Release & Deployment Management> for correction

Ensure correct documentation in Service Knowledge Management System (SKMS)

[Production Platform] Send final report to <Change Management> for PIR

Knowledge Management

Inspire knowledge sharing

Ensure the SKMS contains appropriate knowledge

Efficiently service all parts of the organization with appropriate knowledge

Service Assets & Configuration Management

Ensure a complete Configuration Management DataBase (CMDB)

Ensure logging of any changes to Configuration Items (Cis)

Efficiently service all parts of the organization with configuration information

The “[?]” denotes an optional Item, while “[Test fails]” clarifies when the option comes into play (i.e. “do this if the test
fails”).

The line “[Test Platform, Pre-production Platform, Production Platform]” denotes that for each of the environments, “Test
Platform”, “Pre-production Platform” and “Production Platform”, the Items below (the children) are to be done.

8

The specific process for Request Fulfillment also becomes a HYPERLISTS . But as you create a HYPERLISTS out of the
process, it dawns on you how easy it is to include additional information about the process.

Request Fulfillment

Description

+ Request Fulfillment (RF) handles all

orders from users and executes Standard Changes

Users may contact RF to discuss possible orders

Input

Orders from users

Result

Efficient delivery of orders

Metrics

Sum of time lapsed on open requests

Response time

Process

Receive Service Request from User via the Service Desk

[Not valid according to SLA]

Escalate to <Demand Management>

Take ticket

Ensure all needs are documented

Give time estimate to User

[Standard Change (SC)] Apply Standard Change

[RfC not needed] Effectuate request

[Request is not an SC] <Notification>

Create RfC

Send RfC to <Change Management>

Receive communication about the RfC

Forward information to User

Notification

Give final notification of result to User

The “+” at the start of the third line in the list denotes that a list Item breaks over two or more lines.
The todo list at work is rather easily turned into a valid HYPERLISTS . In fact, it looks almost the same as before:

Todo list

[_] Marketing

[_] Create a campaign for selling the new mobile service

[x] Contact our advertisement agency

[x] Set up an initial brainstorming meeting

[_] 2012-02-03: Hold the meeting

[_] Work out a project plan

[_] Commit resources

[_] Public Relations

[_] Contact Peter at Mobile Press

[_] Present our new revolutionary mobile service

[_] Give him a free trial of the service

[?] Give other journalists there a free trial of the service

[_] Business development

[_] Refine the Service Portfolio strategy

[_] Set up a Project Task Team (PTT) for bailing out failing projects

[_] Include Denise, Tracy and John P in the PTT

9

[_] Process design

[_] Finalize the overall process design for IT

[_] First target is Service Operations and Service Transition

[x] Get the final proposal approved by the IT Manager

[_] Get approval for key process maps

[_] Request Fulfillment

[?] Include Access Management

[_] Incident Management

[_] Problem Management

[_] Change Management

[_] Release & Deployment Management

[?] Include Validation & Testing in same map

[_] Get from the IT Manager the next focus area

You then start using HYPERLISTS for any and all things you want to describe in a concise and precise form. Even a logical
breakdown of whether the universe could be deterministic – after all, the philosophical concepts of Free Will9 and Quantum
Mechanics are two of your favorite hobbies10:

A proof against determinism

A fully deterministic system; AND:

Governing rules must be consistent

Governing rules must be complete

Gödel’s Incompleteness Theorems: No system of rules can be both complete and consistent

No system can be fully deterministic

The universe is non-deterministic

The “AND:” denotes that the sub-Items must both happen or must both be true.
You start using HYPERLISTS regularly at work for your todo lists in your favorite text editor. You use HYPERLISTS with

pen and paper when jotting down ideas or when writing a shopping list. Or outlining an article you are about to write. A
business strategy. Your New Year’s resolutions. Your project for refurbishing your car. Your favorite food recipe:

Chocolate Chip Cheesecake

Ingredients

Bottom crust

[2 cups] graham cracker crumbs

[6 tablespoons] melted butter

[1/4 cup] sugar

Filling

[2-1/4 lb.] cream cheese

[5] eggs

[2/3 cup] sugar

[1 tablespoon] vanilla extract

[1 cup] Baileys Irish Cream

[1 cup] semisweet chocolate chips

Topping

[1 cup] whipping cream

[1 teaspoon] instant coffee powder

[2 tablespoons] sugar

Garnish

Chocolate curls

9My article, “On Will”: http://isene.com/onwill.pdf
10For Gödel’s Incompleteness Theorems, see http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems,
and for the world’s shortest proof, see http://blog.plover.com/math/Gdl-Smullyan.html

http://isene.com/onwill.pdf
http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
http://blog.plover.com/math/Gdl-Smullyan.html

10

Directions

Preheat oven to 325 degrees F

Coat a 9-inch springform pan with nonstick vegetable spray

Combine crumbs and 1/4 cup of sugar in the pan, stir in the melted butter

Press mixture into bottom and 1 inch up the sides of the pan. Bake for 7 minutes

In a food processor, beat cream cheese, add 1-2/3 cup sugar and eggs and mix

Blend in the vanilla and Baileys

Sprinkle half the chocolate chips over the crust

Spoon in the cheese mixture filling

Sprinkle with the remaining chocolate chips

Bake for 1 hour and 20 minutes

Cool cake completely

Beat whipping cream, coffee powder, and 2 tablespoons sugar until peaks form

Spread mixture over cooled cake and garnish with chocolate curls

You use HYPERLISTS on a whiteboard at work for easy collaboration with colleagues. No more focus on what tool to use
to create pretty graphics or how to make it possible for many people to work on the same drawing at once. Sure, those tools do
exist, but you see that a tool can easily distract from creating real content. After a HYPERLISTS is created, it is easy to churn
out some pretty and colorful slides with flowcharts or other graphics to show off to your bosses. The HYPERLISTS remains as
neat “source code” underneath the flashy diagrams as they are more easily maintained, being pure textual lists.

Many HYPERLISTS later, you are getting the hang of it. Time to dive in at the deep end :)

11

2 Background and definition
Having worked extensively with flowcharts, relations diagrams11, Venn diagrams12, Warnier-Orr diagrams13 and other ways
of representing processes, states, instructions, programs and data models, I knew there was something missing. It would
have been great to have a way of representing anything – any state or action – in a way that would be more conducive to
collaboration.

Most people know about flowcharts. But there are other ways of representing data, states, actions or processes: UML14,
Sankey diagrams15, Decision trees16, Petri Net17, Organizational charts18, Mind maps19, Process Flow diagrams20, Feynman
diagrams21, Data Flow diagrams22, Concept maps23, OBASHI24, Task lists (or Todo lists), Warnier/Orr diagrams and various
other diagrams. More than we can list here. They have various uses, various strengths and shortcomings.

Most methodologies for representing states or flows were born out of specific needs and were not meant to be used as
generic methods for representing literally anything as simple as possible. What if there were a way to represent any state, set
of things, actions, flows or transitions? What if the method were simple? What if it were also Turing complete25?

Enter HYPERLISTS – a system for representing data. Any data. Static or dynamic. It can be used to describe any state:
a thing or set of things, an area, a concept or collection of concepts, etc. It can also be used to describe any action or plan,
transformation or transition. In fact, it can describe anything – with one complete markup set. HYPERLISTS can be be used as
an outliner on steroids or a todo-list managing system with unlimited possibilities.

After searching for a complete markup methodology for both states or things and actions or transitions, I came across
the Warnier/Orr diagrams. They seemed to be the best foundation for what I needed. The methodology was expanded to be
capable of describing anything as easily as possible; I removed the graphical parts of Warnier/Orr and expanded the system
substantially. It turned into WOIM (Warnier/Orr/Isene/Möeller) and later got the more descriptive name of HYPERLISTS .
Egil Möeller26 helped in the early refinements.

Besides being the name of the system, “HYPERLISTS ” is also used when referring to a list or lists conforming to this
system.

The strengths of HYPERLISTS are many:

• can represent any state or action with any number of levels
• Turing complete
• text-based (it is wiki-able – i.e. it is easy to collaborate when creating HYPERLISTS)
• not graphical (although it can easily be made graphical for ease of consumption or eye candy)
• an easy syntax, humanly very readable
• very compact
• can represent negatives (“NOT:” = Don’t do the following actions)
• can represent any number of choices in a decision (hard to do in a flowchart)
• easy to do loop counts
• easy to show attributes such as time or timing, location, person responsible, etc.
• potentially easy to map to other representation methods (graphical or otherwise)

In its simplest form, a HYPERLISTS is just a list of Items – like your regular shopping list – but it can be so much more if
you need it to be. A couple of examples will give you the basic idea.

11Relations diagrams:
http://asq.org/learn-about-quality/new-management-planning-tools/overview/relations-diagram.html
12Venn diagrams: http://en.wikipedia.org/wiki/Venn_diagram
13Warnier-Orr diagrams: http://en.wikipedia.org/wiki/Warnier/Orr_diagramandhttp://varatek.com/warnierorr.html
14Unified Modeling Language (UML): http://en.wikipedia.org/wiki/Unified_Modeling_Language
15Sankey diagrams: http://en.wikipedia.org/wiki/Sankey_diagram
16Decision trees: http://en.wikipedia.org/wiki/Decision_tree
17Petri Net: http://en.wikipedia.org/wiki/Petri_netandhttp://www.petrinets.info/
18Organizational charts: http://en.wikipedia.org/wiki/Organizational_chart
19Mind maps: http://en.wikipedia.org/wiki/Mind_map
20Process Flow diagrams: http://en.wikipedia.org/wiki/Process_flow_diagram
21Feynman diagrams: http://en.wikipedia.org/wiki/Feynman_diagram
22Data Flow diagrams: http://en.wikipedia.org/wiki/Data_flow_diagram
23Concept maps: http://en.wikipedia.org/wiki/Concept_map
24OBASHI: http://en.wikipedia.org/wiki/OBASHI
25Turing completeness: http://esolangs.org/wiki/Turing-complete
26Egil Möeller’s personal website: http://redhog.org/

http://asq.org/learn-about-quality/new-management-planning-tools/overview/relations-diagram.html
http://en.wikipedia.org/wiki/Venn_diagram
http://en.wikipedia.org/wiki/Warnier/Orr_diagram and http://varatek.com/warnierorr.html
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Sankey_diagram
http://en.wikipedia.org/wiki/Decision_tree
http://en.wikipedia.org/wiki/Petri_net and http://www.petrinets.info/
http://en.wikipedia.org/wiki/Organizational_chart
http://en.wikipedia.org/wiki/Mind_map
http://en.wikipedia.org/wiki/Process_flow_diagram
http://en.wikipedia.org/wiki/Feynman_diagram
http://en.wikipedia.org/wiki/Data_flow_diagram
http://en.wikipedia.org/wiki/Concept_map
http://en.wikipedia.org/wiki/OBASHI
http://esolangs.org/wiki/Turing-complete
http://redhog.org/

12

An example of describing a state:

Car (example obviously not complete)

Exterior

Paint

Chrome decor

Windows

Rubber linings

[4] Wheels

Interior

Seats

[2] Front

[3] Back

Mechanics

Motor

[6] Cylinders

[24] Valves

Brakes

A transition example (task list):

Walk the dog

Check the weather

[Rain] AND/OR:

Get rain coat

Get umbrella

Dress for the temperature

Get chain

Call the dog

OR:

Go through the woods

Walk the usual track

AND: (concurrency)

Ensure the dog has done its "tasks"

Ensure the dog is exercised

[5+] throw the favorite stick

Walk home

And this can all be done in collaboration on a wiki. States are described, processes are mapped, plans and todo lists are
forged. It’s rather easy, and HYPERLISTS can accommodate any level of complexity.

Let’s go through the various parts of HYPERLISTS and all its possibilities.

13

3 HyperListS

A HYPERLISTS consists of one or more HYPERLISTS Items.

4 HyperListS Items
A HYPERLISTS Item is a line in a HYPERLISTS . It can have “children”. Children are HYPERLISTS Items indented to the right
below the Item.

A HYPERLISTS Item consists of an optional “Starter”, an optional “Type”, “Content” and a “Separator” in that sequence.
All the various parts of a HYPERLISTS Item are described below and in the sequence they appear in an Item, as outlined here:

4.1 Starter

4.2 Type

4.3 Content

4.3.1 Element

4.3.1.1 Operator

4.3.1.2 Qualifier

4.3.1.3 Substitution

4.3.1.4 Property

4.3.1.5 Description

4.3.2 Additive

4.3.2.1 Reference

4.3.2.2 Tag

4.3.2.3 Comment

4.3.2.4 Quote

4.3.2.5 Change Markup

4.4 Separator

Look familiar? Yes, it is part of the table of contents at the beginning of this article – even that is a valid HYPERLISTS . If
you are reading this document as a PDF file, you may use the table of contents to jump directly to any part of the document,
as it consists of clickable links.

4.1 Starter
A HYPERLISTS Item may begin with a “Starter”. A “Starter” can be either an “Identifier” or a “Multi-line Indicator”.

An Identifier is a unique indicator that can be used in referring to that Item. A numbering scheme such as X.Y.Z can be
used, e.g. the first Item in a HYPERLISTS would be 1. The second Item would be 2, etc. A child to the second Item would be
2.1 and the second child of 2 would be identified as 2.2, whereas the child of 2.2 would be 2.2.1.

A shorter form consisting of mixing numbers and letters can also be used, such as 1A1A for the first fourth-level Item. The
next fourth-level Item would be 1A1B. When using this scheme, there is no need for any periods. The Identifier “21T2AD”
would be equivalent to “21.20.2.30”, saving 4 characters.

An Item that spans more than one line must have a Starter. It does not have to be an Identifier. You may use a “Multi-line
Indicator” instead; just prefix the Item with a plus sign (“+”), to show that it spans more than one line. The second line of an
Item will be indented to the same level/indent as the first with an added space in front. If you use a Starter on one Item, then
all the Items in that same group of Items on the same level/indent must also have a Starter.

In the example below, the first child begins with an Identifier and the second a Multi-line Indicator. A Multi-line Indicator
can also be used for single-line Items when other Items on the same level span more than one line and thus require a Multi-line
Indicator.

Multi-line Indicator = "+"

1 Following lines are of the same indent with a "space" before

the text

+ If one Item on a certain level/indent is multi-line, all Items

on the same level/indent must start with a plus sign ("+") or <Identifier>

The angle brackets near the end will be discussed later in this article.

4.2 Type 14

4.2 Type
If it is not obvious or for clarity or strictness, prefix an Item with “S:” if the Item is a static or a state Item (i.e. something
which does not denote action). Use “T:” for a transition Item (an Item indicating action). Alternately, you may use “|” instead
of “S:”, and “/” instead of “T:”. The Type indicator comes after the optional Starter.

Children of a certain Type (either state or transition) inherit their parent’s Type unless otherwise specified.

4.3 Content
A HYPERLISTS Item must have some sort of Content. The Content can be an “Element” and/or an “Additive”.

4.3.1 Element

An Element is either an “Operator”, a “Qualifier”, substitution(s), a “Property” or a “Description”. Let’s treat each of these
concepts.

4.3.1.1 OPERATOR

An Operator is anything that operates on an Item or a set of Items. It can be any of the usual logical operators27. It can also
be other Operators, such as “EXAMPLE: ”, “EXAMPLES: ”, “CHOOSE: ”, “ONE OF THESE: ”, “IMPLIES: ”, “CONTIN-
UOUS: ”, etc. The Operator “CONTINUOUS: ” makes an Item or set of Items run continuously. An Operator is written in
capital letters and ends in a colon and a space.

The Operator “ENCRYPTION: ” indicates that the sub-Item(s) are to be encrypted or that the following block is encrypted.
The encrypted block can be properly indented in the HYPERLISTS , or if indentation is part of the encrypted block, it will be
left justified. This is the only Item that is allowed to break the indentation rules.

If you need to include one or more lines inside a HYPERLISTS that include HYPERLISTS expressions you don’t want to
be interpreted as HYPERLISTS expressions, then use a “literal block”. This is equivalent to “pre-formatted” text in HTML
and some word processors. To include such a block of lines, simply mark the start and end of the literal block with a single
backslash (“\”) on a line.

Example:

\
This is a block of literal text...

Where nothing counts as HyperList markup

Thus - neither this: [?] nor THIS: <Test> - are seen as markup

...until we end this block with...

\

Literal blocks are useful when you want to include, for instance, a block of programming code in the middle of a
HYPERLISTS .

4.3.1.2 QUALIFIER

A Qualifier does as its name suggests; it qualifies an Item. A Qualifier limits the use of an Item. It tells you how many times,
at what times and/or under what conditions an Item is to be executed, exists or is valid. When an Item is to be included only
if several conditions are met, you put all the conditions into square brackets and separate them by commas. If an Item is to
be executed first for one condition, then for another and then for a third, etc, you separate them by periods. The usage is best
described by a few examples:

• Do Item if “the mail has arrived” = “[The mail has arrived]”
• Do Item 3 times = “[3]”
• Do Item 1 or more times = “[1+]”
• Do Item 2 to 4 times = “[2..4]” (the user may choose 2, 3 or 4 times)
• Do Item 2 times while “foo=true” = “[2, foo=true]”
• Do Item from 3 to 5 times while “bar=false” = “[3..5, bar=false]”
• Do Item less than 4 times only while “zoo=0” = “[<4, zoo=0]”
• Do Item 1 or more times while “Bob is polite” = “[1+, Bob is polite]”

27Logical connectives: http://en.wikipedia.org/wiki/Logical_connective#Natural_language

http://en.wikipedia.org/wiki/Logical_connective#Natural_language

4.3 Content 15

• Do Item a minimum 2 and a maximum 7 of times while it rains and temperature is less than 5 degrees Celsius = “[2..7,
Raining, Temperature <5◦C]”

• Do Item in the context of “apples”, then “oranges”, then “grapes” = “[Apples. Oranges. Grapes]”. With this you can
reuse a procedure in many contexts.

You can add a question mark before the qualifier statement to make it clearer that it is an “if” statement. These are
equivalent:

[? Raining] Bring unbrella

[Raining] Bring unbrella

To indicate that an Item is optional, use “[?]”. Example:

Receive calls at reception

Pick up the phone and greet the caller

[Caller does not ask for any specific person]

Ask who the caller wants to speak to

[?] Ask the reason for wanting to talk to that person

[Person available] Transfer call; END

[Person not available] Ask if you can leave a message

Take the message

Send the message to the person

The special word “END” and the semicolon in the above example will be explained later, under “Reference” and “Sepa-
rator”, respectively.

Use a “timestamp” to indicate that an Item is to be done at a certain time, in a certain time span, before or after a certain
time, etc.

A timestamp has the format “YYYY-MM-DD hhmmss”, conforming to the standard ISO-860128. The time/date format
can be shortened to the appropriate time granularity, such as “YYYY-MM-DD hhmm”, “YYYY-MM-DD hh” or “YYYY”.
One can add a timestamp Qualifier such as “[Time = 2012-12-24 17]” or simply “[2012-12-24 17]”.

Timestamps that represent an amount of time may be relative, such as:

• Length of time to wait before doing the Item = “[+YYYY-MM-DD]”
• Less than a certain length of time after previous Item = “[<+YYYY-MM-DD]”
• More than a certain length of time after previous Item = “[>+YYYY-MM-DD]”
• Length of time to wait before doing next Item = “[-YYYY-MM-DD]”
• Less than a certain length of time before next Item = “[<-YYYY-MM-DD]”
• More than a certain length of time before next Item = “[>-YYYY-MM-DD]”
• Length of time to wait after doing referenced Item = “[+YYYY-MM-DD<OtherItem>]”

The last example introduces a new concept, the “Reference”. References will be discussed below.
Other obvious timestamps may be used, such as:

• “[+1 week]”
• “[-2 Martian years]”

Some practical examples:

• Wait one month before doing the Item = “[+YYYY-01-DD]”
• Do Item less than 4 days before next Item = “[<-YYYY-MM-04]”
• Wait one year and two days after Item X = “[+0001-00-02<X>]”

It is also possible to have recurring Items in HYPERLISTS . The strict format is “YYYY-MM-DD+X DAY hh.mm+Y -
YYYY-MM-DD hh.mm”. The first date marks the starting date and the last date marks the end of the repetition interval.
The “+X” is the repetition (i.e. the number of days between each repetition) in relation to the date, while the “+Y” is the
repetition of the time (the amount of time between each repetition). “DAY” represents the name of the day(s) in the week
where recurring Item occurs. You use what you need, i.e. if there is no repetition within a day, obviously the “+Y” would be
skipped. Some examples:

28The international standard for dates and times, ISO 8601: http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601

4.3 Content 16

• “[2012-05-01+7 13.00]” = 2011-05-01 1pm, repeated every 7 days
• “[2012-05-01+2,3,2]” = Every 2, then 3, then 2 days, in repetition
• “[2012-05-01+2 - 2012-05-01]” = Every second day for one year
• “[2012-05-01 13.00+1]” = 2011-05-01 1pm, repeated every hour
• “[2012-05-01 Fri,Sat - 2011-10-01]” = Every Fri & Sat in the repetition interval

You can also use all possible intuitive variations by leaving certain parts of the timestamp unspecified.

• “[YYYY-MM-03]” = Every third of every month
• “[YYYY-12-DD]” = Every day in every December
• “[2011-MM-05]” = The fifth of every month of 2011
• “[Tue,Fri 12.00]” = Noon every Tuesday and Friday

Here is a complex Qualifier example:

[+YYYY-MM-DD 02.30, Button color = Red, 4, ?] Push button

The above statement reads “2 hours and 30 minutes after previous Item, if the color of the button is red, then push the
button 4 times, if you want to”.

If you use HYPERLISTS as a todo-list manager or project management tool, there is a nifty way of showing Items to be
done and Items done; simply add “[]” at the beginning of the line for an “unchecked” Item and “[x]” for a “checked” Item.
An unchecked Item is to be done and is indicated by this “placeholder” Qualifier, while a checked item indicates the Item is
not to be done anymore.

You may add a timestamp for the completion after a checked Item (“[x] YYYY-MM-DD hh.mm:”). In this way, you
combine the Qualifier with a timestamp Property. The timestamp as a Property does not limit when the Item is to be done. It
supplies information about when it was done.

4.3.1.3 SUBSTITUTION

You can use substitutions in curly brackets, like this:

[fruit = apples, oranges, bananas] Eat fruit

The above reads: Eat apples, then oranges, then bananas.

Ask which painting she likes the best; Buy painting

The answer to the question ”What painting do you like the most?” gives an answer which is then reused as a substitution
in ”Buy exactly that paining”.

The second example above is more general and shows how substitutions can be used in a multitude of ways. Here are a
couple more:

Ask the candidate about each previous job

"What was your main measurable results in job?"

"Why did you quit job?"

Brainstorm for a great ideas

Give each idea a value score

Top idea: Fleash out and describe thoroughly

[idea = 2 to 4 on the list] Briefly describe the idea

4.3.1.4 PROPERTY

A Property is any attribute describing the Content. It ends in a colon and a space.
Examples of Properties could be: “Location = Someplace:”, “Color = Green:”, “Strength = Medium:” and “In Norway:”.

Anything that gives additional information or description to the Content.

4.3.1.5 DESCRIPTION

The Description is the main body, the “meat” of the Item. Although an Item may not have a Description, such as a line
containing only the Operator “OR:”, most Items do have a Description. Many Items have only a Description, such as those in
a simple todo list.

4.3 Content 17

4.3.2 Additive

Additives can be used alone or in combination with Elements. An Additive can either be a “Reference”, a “Comment”, a
“Quote” or a “Change Markup”.

4.3.2.1 REFERENCE

A reference is enclosed in angle brackets (“<>”). A reference can be the name of an Item, another HYPERLISTS or anything
else. An example would be a Reference to a website, such as <http://www.isene.com/>, a file, <file:/path/to/filename>, or
another item <The referenced item’s Description>. It can even be a relative reference consisting only of a positive or negative
number (the Reference <+4>would mean 4 items below).

There are two types of References:

1. A redirection or hard Reference
2. A soft Reference

An Item consisting only of a Reference is a redirection. For a transition Item this means one would jump to the referenced
Item and continue execution from there. If the redirect is to jump back after executing the referenced Item (and its children),
then add another set og angle brackets, such as <<Reference>>. This makes it easy to create more compact HYPERLISTS by
adding a set of frequently used subroutines at the end of the list. For a state Item, a Reference means one would include the
referenced Item (and its children) at the Reference point.

There are two special redirections for transition Items:

• An Item consisting only of the key word “SKIP” ends the current HYPERLISTS level
• An Item consisting only of the key word “END” ends the whole HYPERLISTS

If the Reference is only part of an Item, it is a “soft Reference”. It indicates that one would look for more information at the
referenced Item. An even softer Reference would be to put the Reference in parentheses, such as (<Reference>), indicating
that the referenced Item is only something apropos. Parentheses are used for Comments, which will be discussed later.

A Reference can be to any place in the list, up or down, or to another list, or to a file, a web address or any other place
that can be referred to with a unique name used as the Reference. Although the Reference is valid as long as it is unique and
therefore unambiguous, you should note the following best practice for a Reference:

If you reference an Item higher up in the HYPERLISTS , a simple reference to the Item is all that is needed. One would
refer to the Identifier or to the appropriate Content, usually the Description. Examples:

The first Item

A child Item

A grandchild

<A child Item>

It would make sense to use an Identifier for an Item if the Description is long and you want to refer to that Item:

The first Item

1 A child Item

A grandchild

<1>

If you refer to an Item further down the hierarchy, you would use a forward slash (“/”) to separate each level (like the
“path” used in a URL):

The first Item

A child Item (<A grandchild/A baby>)

A grandchild

A baby

4.3 Content 18

If you want to refer to an Item where you first need to “climb the tree” and then go down another “branch”, you start the
path with the highest common level and reference the path from there:

The first Item

A child Item

A grandchild

Another branch

A leaf

<The first Item/A child Item/A grandchild>

Or, if the referenced Item has a unique Identifier, simply use that:

The first Item

A child Item

1 A grandchild

Another branch

A leaf

<1>

You may use a unique concatenation of a path to shorten it, such as <Somewhere higher up/One lev. . . /Ref. . .>. The
three periods indicate concatenation.

4.3.2.2 TAG

A Tag is a “marker” for an item. It tags an item and is used just like hashtags in Twitter. Examples: #TODO #RememberThis
#First #SandraLyng. No spaces are allowed in a tag.

4.3.2.3 COMMENT

Anything within parentheses is a Comment. Comments are are not executed as HYPERLISTS commands – i.e. in a list of
transition Items, they are not actions to be executed.

4.3.2.4 QUOTE

Anything in quotation marks is a Quote. Like a Comment, a Quote is not executed as a HYPERLISTS command.

4.3.2.5 CHANGE MARKUP

When working with HYPERLISTS , especially on paper, there may come a need to mark deletion of Items or to show where an
Item should be moved to. To accommodate this need, Change Markup is introduced. Change markup is a special type of Tag.

If “##<” is added at the end of an Item, it is slated for deletion. To show that an Item should be moved, add “##>” at the
end followed by a Reference showing to which Item it should be moved below.

To indent an Item to the left, add “##<-”. Indenting an Item to the right is marked by “##->”. It is possible to combine
moving and indenting an Item, i.e. moving an Item and making it a child of another: “##><Ref>##->”.

To signify that an Item has been changed from a previous version of a HYPERLISTS , prefix the Item with “##Text##”.
Inside the hash signs you may include information about the change done, e.g. “##John 2019-03-21##” to show that the Item
was changed by a certain person at a given time.

4.4 Separator 19

4.4 Separator
A Separator separates one Item from another. A line in a HYPERLISTS is usually one Item, and Items are then usually separated
by a “newline” (hitting the “Enter” on the keyboard). But it is possible to string several Items together on one line by separating
them with semicolons.

By separating an Item by a newline and then indenting it to the right, you create a child Item. A child adds information to
its parent.

A Separator between two Items with the same or less indent is normally read as “then”. If a parent Item contains a
description, the newline Separator and indent to the right (a child) reads “with” or “consists of”. If a parent Item does not
contain a Description, the Separator and indent to the right (a child) is read as “applies to”, and a Separator between the
children is read as “and”. A few examples should suffice:

A kitchen

Stove

Table

Plates

Knives

Forks

This would read: “A kitchen with stove and table with plates, knives and forks”.

Time = 2010:

Olympic Games

Soccer world championship

This would read: “Time = 2010: applies to: Olympic Games and Soccer world championship”.

Walk the dog

Check the weather

[Rain] AND/OR:

Get rain coat

Get umbrella

Dress for the temperature

Get chain

And this would read: “Walk the dog consists of Check the weather consists of: If rain, AND/OR: applies to children: Get
rain coat, Get umbrella; then Dress for the temperature, then Get chain”. Or more humanly: “Walk the dog consists of check
the weather, which consists of either/or get the rain coat and get umbrella. Then dress for the temperature and then get the
chain.”

4.4 Separator 20

Now consider these four examples:

Production

Station 1

Assemble parts A-G

Station 2

Assemble parts H-R

Station 3

Assemble parts S-Z

Production

Station 1; Assemble parts A-G

Station 2; Assemble parts H-R

Station 3; Assemble parts S-Z

Production

[Station 1]

Assemble parts A-G

[Station 2]

Assemble parts H-R

[Station 3]

Assemble parts S-Z

Production

[Station 1] Assemble parts A-G

[Station 2] Assemble parts H-R

[Station 3] Assemble parts S-Z

The first and second examples say exactly the same thing, but the second example is more efficient as it uses the semicolon
as a Separator instead of using a line break and indent. The same goes for the third and the fourth examples – they are
equivalent. But how about the difference between the first two examples and the last two?

When you use a Qualifier as in examples three and four, you accommodate for the tasks getting done in any chosen
sequence. In those two examples, the production could go, for example, “Station 1”, then “Station 3”, then “Station 2”.

The first and second examples read: “The production consists of: Station 1 assembles parts A-G, then Station 2 assembles
parts H-R and finally Station 3 assembles parts S-Z”

The third and fourth examples read: “The production consists of: if or when at Station 1, assemble parts A-G, if or when
at Station 2, assemble parts H-R, and if or when at Station 3, assemble parts S-Z”

As you can see, there is a subtle but distinct difference.

21

5 A self-defining system
Now that we have covered all the possibilities in a HYPERLISTS , it should be obvious that HYPERLISTS could extend into
a vast array of descriptions. It is even possible to write a parser or compiler for HYPERLISTS and use it as a programming
language.

Is it possible to compact the descriptions above into a HYPERLISTS ? Yes, indeed. The HYPERLISTS system is self-
describing.

HYPERLISTS can be done in many different ways – from informal to strict and from high-level to very detailed. The power
of the tool resides with the user.

To illustrate the flexibility of HYPERLISTS , we will show the definition of this methodology in three steps – from a very
informal and high-level description, to a more strict but still high-level – to the fully-detailed definition of HYPERLISTS .

First, here is a simple list showing what HYPERLISTS is all about:

HyperList Item parts (in sequence):

Starter (optional)

Identifier or Multi-line Indicator

Type (optional)

State or transition

Content (can be an Element and/or an Additive)

Element

Either an Operator, Qualifier, Property, or Description

Additive

Either a Reference, Tag, Comment, Quote, or Change Markup

Separator

Newline or semicolon

Now, that’s a very simple HYPERLISTS . Let’s make the same simple list more strict by using the system concisely:

HyperList Item parts

[?] Starter; OR:

Identifier

Multi-line Indicator

[?] Type; OR:

State

Transition

Content; AND/OR:

Element; AND/OR:

Operator

Qualifier

Property

Description

Additive; AND/OR:

Reference

Tag

Comment

Quote

Change Markup

Separator; OR:

Newline

Semicolon

That wasn’t so intricate either, and that list is more easily parsable by a computer program if one wanted to automatically
create graphical representation.

How about the full and complete definition, including all imaginable details of how any HYPERLISTS could conceivably
be structured. Fasten your seat belt.

The following list shows the legal structure and syntax of a HYPERLISTS . It covers all you have read above. Note:
green denotes Qualifiers or semicolon Separators, blue for Operators, purple for Starters and References, and turquoise for
Comments and Quotes. (For HYPERLISTS that contain Properties, red would be the color denoting these, while yellow or
orange is used for Tags.)

22

HyperList

[1+] HyperList Item

[?] Starter; OR:

Identifier (Numbers: Format = "1.1.1.1", Mixed: Format = "1A1A")

[? Multi-line Item] The Identifier acts like the plus sign ("+")

Multi-line Indicator = "+"

+ If one Item on a certain indent is multi-line, all Items on the same indent

(including single-line Items) must start with a plus sign ("+") or <Identifier>

and all lines on the same indent after the first line must start with a space

[?] Type

OR:

State = "S:" or "|"

Transition = "T:" or "/"

Children inherit Type from parent unless marked with different Type

Can be skipped when the Item is obviously a state or transition

Content; AND/OR:

Element; AND/OR:

Operator

Anything operating on an Item or a set of Items

[? Set of Items] Items are indented below the Operator

Can be any of the usual logical operators

Is written in capitals ending in a colon and a space

EXAMPLES: "AND: ", "OR: ", "AND/OR: ", "NOT: ", "IMPLIES: "

Can contain a Comment to specify the Operator

EXAMPLE: "OR(PRIORITY): "

Sub-Items are to be chosen in the order of priority as listed

To make the Item run continuously, use "CONTINUOUS: "

Item is done concurrent with remaining Items

The Operator can be combined with a timestamp Property

EXAMPLE: "CONTINUOUS: YYYY-MM-07:" = Do the Item weekly

To show that an Item is encrypted or is to be encrypted, use "ENCRYPTION: "

OR:

The encrypted block can be correctly indented

The encrypted block contains indentation and is left justified

This would seem to break the list, but is allowed

A block can be included of "literal text" negating any HyperList markup

Use a HyperList Item containing only the Operator "\" to mark start/end
EXAMPLE:

\
This is a block of literal text...

Where nothing counts as HyperList markup

Thus - neither this: [?] nor THIS: <Test> - are seen as markup

...until we end this block with...

\
Qualifier

Any statement in square brackets that qualifies an Item

Specifies under what conditions an Item is to be executed, exists or is valid

Several Qualifiers can be strung together, separated by commas

All Qualifiers need to be fulfilled for the Item to be valid

EXAMPLE: "[+YYYY-MM-DD 02.30, Button color = Red, 4, ?] Push button"

Successive Qualifiers can be strung together, separated by periods; EXAMPLE:

"[Apples. Oranges. Grapes]"

Do Item in the context of "apples", then "oranges", then "grapes"

EXAMPLES:

Do Item 3 times = "[3]"

23

Do Item if "the mail has arrived" = "[The mail has arrived]"

Do Item 2 times while "foo=true" = "[2, foo=true]"

Do Item from 3 to 5 times while "bar=false" = "[3..5, bar=false]"

Do Item 1 or more times = "[1+]"

Do Item 1 or more times while "Bob is polite" = "[1+, Bob is polite]"

Do Item up to 4 times only while "zoo=0" = "[<4, zoo=0]"

Optional Item = "[?]"

Timestamp Qualifier = "[YYYY-MM-DD hh.mm.ss]"

Shorten the format to the appropriate granularity

Time relations

Length of time to wait before doing the Item = "[+YYYY-MM-DD]"

Less than a certain length of time after previous Item = "[<+YYYY-MM-DD]"

More than a certain length of time after previous Item = "[>+YYYY-MM-DD]"

Length of time to wait before doing next Item = "[-YYYY-MM-DD]"

Less than a certain length of time before next Item = "[<-YYYY-MM-DD]"

More than a certain length of time before next Item = "[>-YYYY-MM-DD]"

Length of time to wait after doing referenced Item = "[+YYYY-MM-DD<Item>]"

Other obvious time indicators may be used; EXAMPLES:

"[+1 week]"

"[-2 Martian years]"

EXAMPLES:

Wait one month before doing the Item = "[+YYYY-01-DD]"

Do Item less than 4 days before next Item = "[<-YYYY-MM-04]"

Wait one year and two days after Item X = "[+0001-00-02<X>]"

Time repetition

Obvious/intuitive repetition

EXAMPLES:

"[YYYY-MM-03]" = The third of every month

"[YYYY-12-DD]" = Every day in every December

"[2011-MM-05]" = The fifth of every month of 2011

"[Tue,Fri 12.00]" = Noon every Tuesday and Friday

Strict convention

Format = YYYY-MM-DD+X Day hh.mm+Y - YYYY-MM-DD hh.mm; EXAMPLES:

"[2011-05-01+7 13.00]" = 2011-05-01 1pm, repeated every 7 days

"[2011-05-01+2,3,2]" = Every 2, then 3, then 2 days, in repetition

"[2011-05-01+2 - 2012-05-01]" = Every second day for one year

"[2011-05-01 13.00+1]" = 2011-05-01 1pm, repeated every hour

"[2011-05-01 Fri,Sat - 2011-10-01]" = Every Fri & Sat in time interval

Checking off Items

Unchecked Item = "[_]"

Checked Item = "[x]"

[?] Timestamp Property after ("[x] YYYY-MM-DD hh.mm:ss:")

Substitution

Any statement in curly brackets is a substitution; EXAMPLES:

"[fruit = apples, oranges, bananas] Eat {fruit}"
Eat apples, then oranges, then bananas

"Ask which painting she likes the best; Buy {painting}"
Property

Any attribute to the <Content>, ending in a colon and a space

Gives additional information or description to the Item

EXAMPLES:

"Location = Someplace:", "Color = Green:", "Strength = Medium:" and "In Norway:"

Description

The main body of the HyperList Item, the "meat" of the line

24

Additive; AND/OR:

Reference

+ An Item name or Identifier, list name or anything else

enclosed in angle brackets ("<>"); EXAMPLES:

Reference to a website = "<http://www.isene.com/>"

Reference to a file = "<file:/path/to/filename>"

A relative Reference to the seventh item below the current = "<+7>"

There are two types of References; OR:

Redirection (hard Reference)

An Item consisting only of a Reference is a redirection

For a transition Item = Jump to referenced Item and execute

+ If the redirect is to jump back after executing

the referenced Item (and its children), then add another

set of angle brackets (<<Referenced Item>>)

+ EXAMPLE: Use this when creating subroutines at

the end of the list

For a state Item = Include the referenced Item

An Item consisting only of the key word "SKIP"

Ends the current HyperList level

An Item consisting only of the key word "END"

Ends the whole HyperList

Soft Reference

Reference is part of an Item

Look at referenced Item for info only

Even softer Reference = Have the Reference in parentheses

An Item that is only something apropos

+ For an Item upward in the HyperList, a simple Reference to the

Item’s <Content> is all that is needed

+ A Reference containing several levels down a HyperList needs a "/"

to separate each level, like a "path" (as with a URL) to the Item

+ To make a Reference to a different branch in a HyperList,

start the Reference from the highest common level on the list

and include all Items down to the referenced Item

EXAMPLE: Reference from here to <Hyperlist Item/Starter/Identifier>

+ For long Items in a Reference, concatenation can be used

The concatenation must be unique

EXAMPLE: Reference from here to <Additive/Comment/Anything...>

Tag

A hash sign followed by any letters or numbers, used as a marker (#Tagged)

Is not executed as a HyperList command

Comment

Anything within parentheses is a Comment

Is not executed as a HyperList command

Quote

Anything in quotation marks is a Quote

Is not executed as a HyperList command

Change Markup; OR:

Deletion

Remove the Item by adding "##<" at the end of the Item

Motion; OPTIONS:

Move the Item by adding "##><Reference>"

This moves the Item just below the referenced Item

Move the Item one level in by adding "##<-" at the end of the Item

Move the Item one level out by adding "##->" at the end of the Item

EXAMPLE: Move an Item as a child to referenced Item = "##><Reference>##->"

25

Changed Item

Prefix an Item with "##Text##" to signify that a change has been made

Add information inside the hash signs as appropriate

EXAMPLE: To show who changed it and when = "##John 2012-03-21##"

Separator

OR:

Semicolon

A semicolon is used to separate two HyperList Items on the same line

Newline

Used to add another Item on the same level

Indent

A Tab or an asterisk ("*")

Used to add a child

A child adds information to its parent

A child is another regular <HyperList Item>

Definition

A Separator and the same or less indent normally reads "then:"

[? Parent contains <Description>]

The Separator and right indent reads "with:" or "consists of:"

[? NOT: Parent contains <Description>]

The Separator and right indent reads "applies to:"

A Separator between the children reads "and:"

Read and re-read the HYPERLISTS above and you will be a HYPERLISTS master after a while. It’s all there.
The colors are for clarification and are the same colors used in a VIM script to help you create and manage HYPERLISTS .

6 Notes on style
HYPERLISTS only dictates structure. The system is not concerned with style, such as colors or font types. You may use any
coloring, font type, bold face or italics to emphasize the content of a list. The colors used in the full definition list above are
merely an example. You may also write an Item description in capital letters for emphasis.

HYPERLISTS are most readable when you use fixed-width fonts (fonts where all letters have the same width), such as in
all the examples in this document. But you may instead use a proportional font (like the one you are reading now, where the
“m” is much wider than the “i”).

You may use an indent of any width, as long as you make sure the HYPERLISTS is readable. For fixed-width fonts, an
indent (tab) of three spaces is usually the best, but for HYPERLISTS consisting of many levels, you may prefer an indent of
two spaces so as not to make the list too wide.

7 Tools
If you use VIM29 as an editor, you can use my VIM plugin30 for creating and viewing HYPERLISTS . It highlights HYPERLISTS with
the colors shown above. Tabs (or asterisks, for compatibility with EMACS31 outline mode and the Mediawiki32 TreeAnd-
Menu33 extension) are used for indenting. The plugin offers simple collapsing of lists or parts of lists, reference jumping, auto
encryption/decryption, “presentation mode” and much more.

There is also HyperGraph - a tool to automatically graph HYPERLISTS . This is a command line script written in Ruby that
will graph your HYPERLISTS as a state (like a mindmap) or transition (like a flow chart) in several graphics formats (PNG,
JPG, GIF, SVG, PS or FIG). For a list of the many options it provides, run “hypergraph -h”. You will find HyperGraph on the
official HYPERLISTS page: http://isene.me/hyperlist/.

29The VIM text editor: http://www.vim.org
30The HYPERLISTS plugin for VIM: http://vim.sourceforge.net/scripts/script.php?script_id=4006
31The GNU EMACS text editor: http://www.gnu.org/software/emacs/
32MediaWiki, the software used for Wikipedia: http://www.mediawiki.org/wiki/MediaWiki
33TreeAndMenu, a MediaWiki plugin: http://www.mediawiki.org/wiki/Extension:TreeAndMenu

http://isene.me/hyperlist/
http://www.vim.org
http://vim.sourceforge.net/scripts/script.php?script_id=4006
http://www.gnu.org/software/emacs/
http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/Extension:TreeAndMenu

NOTES 26

Notes

	Introduction
	Background and definition
	HyperListS
	HyperListS Items
	Starter
	Type
	Content
	Element
	Operator
	Qualifier
	Substitution
	Property
	Description

	Additive
	Reference
	Tag
	Comment
	Quote
	Change Markup

	Separator

	A self-defining system
	Notes on style
	Tools

